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SUMMARY 

New finite elements have been developed to  simulate steady and unsteady two-dimensional free surface 
flows. The depth-averaged velocity components with the free surface elevation have been used as independent 
variables in the model. The differences between the various elements presented lie in the choice of velocity 
approximation. The Newton-Raphson method has been used to  solve the non-linear system of equations. 
Emphasis is put on bench-mark examples to assess the accuracy and efficiency of the elements. A simple 
stable new element tested herein shows promising advantages for industrial finite element codes. 

KEY WORDS Free Surface Flow Mixed Finite Elements Choice of Velocity Approximation 

INTRODUCTION 

For studying shallow water flows, Pritchard’ has discussed various aspects of the depth-averaged 
two-dimensional model leading to average velocities (u, v)  and variation of water level (h) as 
variables. Leenderste’ and his group have used finite difference techniques to study estuary and 
river flows based on a similar model. The development of finite elements along with fast computing 
facilities attracted the attention of researchers in the early seventies to apply those techniques 
for analysing such flows. Taylor and Hood3 used quadrilateral elements for studying two- 
dimensional flows with continuous biquadratic velocities and linear water level approximation, 
whereas Connor and Wang4 tried simple triangular elements, with linear approximation for 
velocity and water level. In those early finite element works, numerical oscillations were observed 
in water level values which in certain cases had an influence on the whole velocity field. This 
was especially the case when linear triangular elements were used for studying closed estuary 
and steady large river flows. The work of Taylor and his colleagues concluded that the problem 
of oscillations can be solved by a proper choice of approximations for velocities and water levels. 
A heuristic recommendation was that the water level approximations should be one degree lower 
than the velocity approximations. In the meantime, the works of Brezzi’ and Babuska6 for 
mixed finite element models have led to the definition of consistency conditions (known as B.B. 
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or inf-sup conditions) for Stokes flows in order to obtain a solution without parasitic oscillations. 
There is now a large amount of literature published on this subject and we may mention among 
others, the works of Sani et ~ l . , ~  Fortin,* Oden and Carey' and Girault and Raviart." However, 
this analysis cannot be directly applied to free surface estuary flows. It is generally accepted that 
if a finite element approximation does not respect the inf-sup condition for Stokes flows, it will 
most probably give parasitic oscillations for free surface flows. Finite element models are at 
present successfully used to solve two-dimensional steady and unsteady flows. Cochet' ' and 
Cochet et al." have made an elaborate study of various types of Co elements (u, u, h are 
continuous) in order to determine their efficiency for such flows. Based on different works, 
Waiters and Cheng13 have concluded that the quadrilateral element Q 9-4 (9 nodes for velocities, 
4 corner nodes for elevations) and the triangular element T6-3 (6 nodes for velocities, 3 corner 
nodes for elevations) lead to solutions free of oscillations for different types of complex flows. 
Similar conclusions have been made for studying Stokes flows with such elements. 

In the present study, we propose four new triangular elements, T6B, T3B, T6BN and T6N, 
for studying depth-averaged steady and unsteady flows. The water level h varies linearly and 
the velocity approximations are complete or incomplete quadratic with or without a bubble 
function. The development of these elements has been inspired by works of Fortin* on penalty 
elements for Stokes problems where the pressure approximation is discontinuous and Arnold 
et on equal interpolation continuous pressure-velocity elements. Herein, we study different 
types of typical flows to evaluate the relative efficiency and accuracy of these elements. 

MATHEMATICAL MODEL 

The classical shallow water equations governing free surface flows are defined as follows: l- '?l 1,1 

au au au a au a au ah 
at ax ay  ax ax a y  ay  ax C ' ( H + ~ )  
-+u-+v---v---v-+g-+ gu J(u' + v') = F,, 

av av av a av a aU ah 
at ax ay ax ax a y  a y  a y  C ' ( H + ~ )  
-+ u- + v---v- - -v-  + g -  + gu J(u' + u') = F,,  

u = &lh" (x,y,z ).dz v = (X,Y.Z) dz 

Figure 1. Definition sketch for shallow water free surface flow 
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= 0, ( 3 )  
ah a(H + h)u + a(H + h)u 
at a x  aY 
-+ 

where u and u are the averaged velocity components and h is the surface level variation. We 
denote by H the depth of the bottom with respect to a reference plane (Figure 1). F ,  and F ,  are 
the external force components (e.g. forces due to wind). v is introduced to include turbulence 
and numerical viscosity. This may depend on velocity or its gradient and a relevant mixing 
length choice. C is Chezy's coefficient to represent the bed rugosity; V denotes the fluid domain 
and S its boundary. 

It is worth noting that the shallow water equations (1)-(3) are based on a hydrostatic pressure 
approximation and are thus limited to flows with small water surface and bed slopes. 

WEAK VARIATIONAL FORMULATION 

The weak formulation underlying our finite element scheme is a standard Galerkin model. 
Multiplying equations (1)-(3) by arbitrary test functions 6u, 6u, 6h we thus want to find u, u 
and h such that 

+--+--+-- dV 
ax ax ay ay  ax ax ay ay  
aaUau asuau aaU au 

- I s v  ( d u g  + 6u:)dS = O. 

6u, 6 u  and 6h are the weighting functions belonging to the same functional spaces as u, u 
and h, respectively. In the finite element model Co-type approximations for (u, 6u), ( u , 6 u )  and 
(h, 6h)  are used. 

Many variants are possible for the above weak formulation. For instance the term 
Sv6ugradhdV can be integrated by parts to yield Jvhdiv6udx, and one can obtain 
Sy grad (6h).(H + h)u dx + Js6h(H + h)um ds, for the 6h part (n denotes the outward normal 
direction to the boundary). 

The choice of the formulation may change not only the choice of approximations but also 
natural boundary conditions, that is conditions hidden in the variational formulation itself. Care 
must be taken to use the correct form relative to the desired boundary conditions. 

For natural flows, we encounter two types of boundary conditions: 

1. For solid boundaries, it is a common practice in engineering applications to use free-slip 
or quasi-slip conditions to include boundary drag. At a point on the boundary, the velocity 
component is imposed to be zero along the normal direction. A tangential force law is 
defined to include the boundary layer drag effect along the tangential direction. In general, 
this force is assumed negligible as compared to the bottom friction force. For numerical 
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purposes the free-slip condition avoids oscillations and leads to savings in computational 
effort, since the relatively small boundary layer is neglected. 

2.  For open boundaries, the choice of boundary conditions depends on the availability of 
measured data. Very often, one imposes the water levels along with a chosen orientation 
of velocity. In certain fortunate situations, it is possible to use the velocity profiles. 

PRESENTATION OF THE ELEMENTS 

Straight edges are used to define the triangular geometry of elements. Approximations for water 
level and velocity components are represented on a reference eIement (Figure 2). 

All the elements use the standard Co linear approximation for h and 6h.  However the difference 
lies in the choice of velocity approximations for each element. 

T3B element ( the  mini-element) 

This is the simplest triangular element satisfying the inf-sup ~ o n d i t i o n . ' ~ - ' ~  It is identical to 
the element used by Connor and Wang but enriched by two internal degrees of freedom, 
representing velocity components. Each degree is associated with a bubble function (Ibl, A,, A3 
in barycentric co-ordinates) which vanishes on the boundary of the element. 

T6 element 

This is the classical element employed by a large number of researchers11,13,15,17 in fluid flow 
studies. The standard 6 term quadratic approximations are used to represent the fields of each 
velocity component. A proof of its stability for Stokes flows was given by Bercovier and 
Pironneau. ' 

T6B element 

This differs from the T6 element by two additional internal degrees of freedom associated 
with the same bubble functions as in the T3B element. It is expected that this should improve 
the accuracy. 

T6BN element 

The development of this element is based on the technique first introduced by Fortin' and 
later used by Fortin16 and S0u1aimani.l~ This element is nothing but the T3B element with a 

T3B T6 T6B T 6 N  TGBN 
0 Presaure and velocity node 
o Velocity node 
f Normal velocity node 

Figure 2. Presentation of the elements 
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Table I. Presentation of the elements 

Symbol Velocity 
approximation 

Number of d.0.f. after Stability 
d.0.f. condensation 

T3 B 

T6 
T6B 

T6BN Quadratic for the 

Linear for u and u 
plus internal bubble 
Quadratic for u and u 
Quadratic for u and u 
plus internal bubble 

normal component and 
linear for tangential, 
plus internal bubble 

without bubble 
T6N Identical to T6BN but 

11 

15 
17 

14 

11 

9 Yes 

15 Yes 
15 Yes 

12 Yes 

11  N o  

normal velocity component at each of the 3 mid-side points. Along each side, the normal velocity 
is quadratic, whereas the tangential one is linear. In practice, this element is built by 
post-processing the elementary matrix of the T6B element to eliminate the tangential points on 
the sides.18 

T6N element 

This is obtained by ignoring the internal degrees of freedom of the T6BN element. This element 
does not satisfy the inf-sup condition, but has nevertheless given, in some applications, acceptable 
results for velocities. 

With respect to computational effort, T6, T6B, T6BN and T6N are comparable as to the 
construction of the matrix. A seven-point Gaussian integration scheme has been used. The T3B 
element can be integrated exactly, which leads to substantial savings. The solution cost is in 
direct relation to the number of degrees of freedom. Overall computing with T3B requires about 
48 per cent of the effort needed with T6. 

DISCRETIZED MODEL AND STRATEGY OF RESOLUTION 

The discretized formulation (4) is equivalent to solving an algebraic non-linear system of equations 
defined as follows. 

WJ) + CK({UI)I{Ul= {F),  ( 5 )  

where (U} is the vector of all degrees of freedom and (U} is its temporal derivative, M is 
the mass matrix and K is the rigid non-linear matrix. 

We have used an implicit Euler scheme coupled with the standard Newton-Raphson method 
to solve the above system of equations.” It is worth noting here that the inclusion of all 
non-linear terms in the computation of the tangent matrix increases the convergence of the 
iterative process as demonstrated numerically in Reference 15. Indeed, the terms representing 
bottom shears are important and may dominate in shallow-water flows. Since they are non-linear 
with respect to velocity and free surface level, their derivatives should be included in the tangent 
matrix in order to achieve the quadratic convergence rate of the Newton-Raphson method. The 
solution strategy requires proper choice of step size and initial conditions, and an incremental 
introduction of velocity and water level boundary conditions. 
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Other time-stepping procedures could evidently be used. It could for example be advantageous 
to use a trapezoidal integration rule to obtain a second-order scheme. More stable schemes, 
such as Gear's, could also be thought of and future developments should include such features. 

NUMERICAL EXAMPLES 

The following bench-mark examples have been studied in order to test the efficiency and the 
stability of the elements presented in the previous section: 

(a) simple steady flow with free surface 
(b) complete two-dimensional free surface flow 
(c) one-dimensional unsteady flow with different slopes. 

The study is concluded with a practical example of flow analysis in the St. Lawrence River. 

Steady free surface flow 

We have studied a simple steady free surface flow where the non-linear terms in equations (1) 
and (2) have been neglected. The introduction of explicit external forces in a totally artificial 
situation permits working with a known exact solution. Thus the accuracy of the finite elements 
schemes could be easily tested. 

It should be said that even in the simple case where H = 0 the equations are more intricate 
than a Stokes flow. The continuity equation (3) remains non-linear. A comparative study of the 
behaviour of the various elements, cited above, in the case of Stokes flows has been presented 
by Fortin et aL2' 

A square domain defined by 0 Q x Q 100 and 0 Q y Q 100 has been partitioned into regular 
triangular elements with various mesh sizes h (Figure 3). 

Figure 3. Example of regular space discretization. Boundary conditions: exact velocity imposed at all sides; exact water 
level imposed at one node. h = mesh size 
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The depth of the bottom is given by 

H = 10 + a(x + y), with CI = 

The external component forces are 

F ,  = a2(a  - 6y) and F ,  = a2(a  - 6x). 

The exact solution is then 

u,, = u2y3, vex = x2x3 and hex = - a(x + y). 

Errors between the exact (ueJ and numerical solutions (u,,) are evaluated by means of norms: 

with 
Ev= II~~-uexll1 and Ep= l l h - h e x l l o ~  

livlll = (gradv)’dV and l lqllo= q2dV. f fv  
Velocity values have been specified at the boundary and the water level has been imposed at 

only one point (x = 0, y = 100). The solution has been obtained with use of the Newton-Raphson 
method and the norm of convergence of the iterative process has been limited to 

Variations of E,  and E ,  ( E ,  is plotted only for the T3B, T6BN and T6N elements since the 
numerical surface elevation for T6B and T6 elements practically coincides with the exact solution) 
with mesh size are presented in Figures 4 and 5, and these show that 

(i) the T3B, T6N and T6BN elements provide very similar results for the velocity field 
(ii) the T6B element presents velocity errors very slightly less than those for the T6 element 

(iii) the T6N element presents important errors of the free surface level 
(iv) for the T3B element, the numerical water level converges linearly without any oscillations 

but it is less accurate than for the T6BN element (and of course T6 or T6B). 

0 

Figure 4. Variation of velocity error norm with mesh size 
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-Log h 
Figure 5. Variation of pressure error norm with mesh size (there is no error for T6 and T6B elements) 

0) 6) 
Figure 6. Free surface flow: isobars. (a) Element T3B. (b) Element T6N 

Figures 6(a) and 6(b) show the isobars of the T3B and T6N elements. Figure 6(b) shows clearly 
that the computed water levels for the T6N element do not vary linearly, as expected from the 
exact solution and as computed by stable elements. 

Bench-murk test: complete two-dimensional free-surface flow 

We establish a bench-mark example to assess the quality of the various finite element schemes 
in a two-dimensional free surface flow where all non-linear terms are present. It consists of 
solving the set of equations (1)-(3) without any simplifications and of comparing the numerical 
results with the exact solution. The domain is defined by 0 < x < 100, 0 < y < 100, with 
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H = 10 + a ( x  + y )  and a =  
C = 50.0 m’”/s and the boundary conditions considered are as follows: 

The hydraulics parameters are v = l.0m2/s, y = 9.81 m/s2, 

(a) exact values for velocities at all boundaries 
(b) h specified at one point. 

The external component forces are expressed by 

a4g 6a2x  + ag + 3a4x2y3 + ---x3,/(x6 + y‘), 
l0C2 

for which the exact solution reads 

u = a2y3, 
v = a2x3 ,  
h = - a ( x  + y ) .  

Tables I1 and 111 show numerical results observed at the first diagonal line of the domain for 
a mesh size equal to 0.2. This example confirms the above conclusions, that the T6 and T6BN 

Table 11. Comparison of the first diagonal surface levels: numerical results with exact solution for a two- 
dimensional free-surface flow 

0 0.2 0.4 0.6 0.8 1 EP 
X Y  

100 - 100 

Table 111. Comparison of the first diagonal velocities: numerical results with the exact solution for a two- 
dimensional free-surface flow 

0 0.2 0.4 0.6 0.8 1 

Exact imposed 0.80 x lo-’ 0.064 0.218 0512 imposed 
T3B imposed 0.84302 x lo-’ 0.066376 0.22164 0.51393 imposed 0.30104 
T6 imposed 0.8077 x 10- ’ 0.06468 1 0.2 1772 0.5 1395 imposed 0.02062 
T6B imposed 0%0089 x 0.064664 0.21774 051402 imposed 0.01874 
T6BN imposed 0.35206 x lo-’ 0.05566 0.20877 0.48797 imposed 0.27622 
T6N imposed 0.054135 0.21027 0.47854 imposed 0.26712 
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elements are obviously more accurate than the other elements and that the T3B element provides 
acceptable performance with less computational effort. 

One-dimensional unsteady flow 

Neglecting all non-linear terms in equations (1) and ( 2 )  and the surface level in equation (3) 
(with respect to the bottom depth), then the one-dimensional linear wave is governed by the 
following relations: 

a u  ah  
-- + 9-- = 0, 
at  ax 
dh 8Hu -+-=o. 

Using the above two-dimensional finite element model, we study the propagation of the linear 
wave in a prismatic channel with a closed end (Figure 7). Considering the following boundary 
conditions: 

u = O  at x = x 0  and h = a c o s o t  at x = L ,  

at ax 

Sections Y.m t 

61 

6 m  F F r  

T L 

Cl 

Figure 7. Mesh configuration ofprismatic channel: (a) mesh configuration (b) constant depth H = 10m; (c) variation of the 
depth H if the channel 
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and a constant bed slope, the exact solution is then determined analytically (cf. Appendix). A 
stable numerical solution has been obtained after three cycles of a period T of one hour, starting 
from rest, and with a time interval At = 50s. Results are presented in Tables IV-VII. They are 
those for centre-line nodes where the two-dimensional flow is expected to behave unidirectionally. 

Table IV. Comparison of numerical results and exact solution for the propagation 
of a linear wave: water levels at t = 2.0, with So = 0 and At = 50s 

Section 1 2 3 4 5 

Exact 0.131 0.129 0.123 0.113 0.1 
T3B 0.130 0.128 0.123 0.1 13 0.1 
T6 0.130 0.128 0.122 0.113 0.1 
T6B 0.130 0128 0.123 0.1 13 0.1 
T6BN 0127 0125 0.120 0.1 11 0.1 
T6N 0.1 30 0.128 0.123 0.113 0.1 

Table V. Comparison of numerical results and exact solution for the propagation 
of a linear wave: velocities at t = 2.25 h with So = 0 and At = 50s 

Section 
~~~ 

1 2 3 4 5 

Exact 0.000 0.023 0.045 0.066 0.084 
T3B 0.0 0.0225 0.0442 0.0646 0.0798 
T6 0.0 0.0224 0.0440 0.0645 0.0759 
T6B 0.0 0.0225 0.0443 0.0645 0.0759 
T6BN 0.0 0.0193 0.0380 0.0556 0.0698 
T6N 0.0 0.0225 0.0443 0.0648 0.0850 

Table VI. Comparison of numerical results and exact solution for the propagation 
of a linear wave: water levels at t = 2.0, with So = and At = 5 0 s  

Section 1 2 3 4 5 

Exact 0.1381 01349 0.1265 0.1145 0.1 
T3B 0.1364 0133 01254 0.1139 0.1 
T6 0.1365 0.1334 0.1254 0.1139 0.1 
T6B 0.1364 0.1335 0.1254 0.1 139 0.1 
T6BN 0.1322 0.1296 0.1226 0.1124 0.1 
T6N 0.1354 0.1325 0.1246 0.113 0.1 

Table VII. Comparison of numerical results and exact solution for the propagation 
of a linear wave: velocities at t = 2.25 h with So = and At = 50s 

Section 1 2 3 4 5 

Exact 0.0 0.0342 0.0585 0.0754 0.0866 
T3 B 0.0 0.0333 0.0572 0.0740 0.0834 
T6 0.0 0.0322 00562 0.0730 0.0708 
T6B 0.0 00322 0.5623 0.0730 0.0808 
T6BN 0.0 0.0292 0.0504 0.0656 0.0749 
T6N 0 0  0.0325 00563 0.0730 0.0814 
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The numerical results are satisfactory for all elements, considering the coarse mesh size used. 
An artificial diffusion introduces lateral velocities so that the flow is not strictly unidimensional. 
Less numerical diffusion has been observed with the T3B and T6BN elements. This diffusion is 
principally due to the time integrating scheme, which is known to be very dissipative. 

In unsteady flows the consumption of computing time may constitute a strong constraint to 
be considered in practical applications. Simple elements such T3B and T6N could be efficient 
and competitive with the most popular T6 element. Indeed, in this simple example nearly 
25 per cent of CPU time has been saved with those elements in comparison with the T6 
element. 

S t .  Lawrence River simulation 

We have simulated the steady flow of the St. Lawrence River near the Gentilly area. The goal 
is to qualitatively compare the behaviour of the elements T6B, T6BN, T6N, T3B with the T6 
element already used in Reference 21. The mesh used is presented in Figure 8. Surface levels are 
specified on open boundaries (the difference between the two levels is 0.20m) and the no-slip 
condition has been applied to solid boundaries. From a practical point of view, the slip condition 
would have been preferable. However the present choice is made simply to eliminate the influence 
of boundary irregularities which vary for different types of elements, thus facilitating the 
comparison of results. Figure 9 presents an example of the velocity field obtained using the T3B 
element. Variations of the intensity of velocity and of the free surface level at sections A-A and 
B-B 

1.  
2. 

3. 

(see Figure 8) are presented in Figures 10 and 1 1 .  We conclude that: 

The numerical results for the T6 and T6B elements are practically identical. 
The difference between the T3B and T6 results has been observed to be less than 10 per 
cent for the velocity and less than 5 per cent for the water level. This is within the error 
associated with the model itself and can be considered as quite satisfactory. The greatest 
discrepancies correspond to the regions where the bathymetry varies rapidly, and thus for 
the simplest element (T3B) a local refinement of the mesh could be performed to improve 
the results. In term of time consumption the T3B element has offered a 45 per cent saving 
in time in comparison with the T6 element. 
There is an appreciable discrepancy between results for the T6N element and the others. 

I 1 I A i  I 

4 6 0 10 12 

Figure 8. Gentilly: mesh configuration (374 elements) 

* 
km 
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km 

5 -  

4 -  

3- 

2-  

I -  

907 

a 

I I I 1 I 

0: 4 6 8 10 12 
c 

km 

Figure 9. Gentilly: velocity field, steady flow 

Figure 10. Gentilly: velocity distribution at sections A-A and B-B 
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Nodes 
Section B-8 

Nodes 
Section A-A 

Figure 1 1 .  Gentilly: water level profile at sections A-A and B-B 

Important oscillations of the free surface level have been observed and are shown in 
Figure 12. A chequerboard pattern is clearly present in these oscillation and this is a clear 
evidence of the instability of this element. 

CONCLUSION 

We have considered various bench-mark examples, some of them not classical, in order to assess 
the performance of the elements developed in this study. These examples may be useful to other 
researchers for making a preliminary evaluation of finite element codes. We consider, no doubt, 
the T6 element as the basis for comparison since it is employed most often in all practical studies. 
It seems that the simple T3B element offers excellent advantages in computational efficiency and 
simplicity for practical applications. We believe that this element could be easily integrated in 
a standard way in industrial codes for hydraulic flows. There is no evident advantage to using 
the T6B element. However the T6BN element effectively provides accuracy and efficiency between 
the most robust element T6 and the simplest element T3B. At present, we are trying to develop 
efficient elements for three-dimensional flows by extending the basic approximation techniques 
employed for the two-dimensional elements. 

APPENDIX: PROPAGATION OF A LINEAR WAVE IN A 
CLOSED CHANNEL 

When the non-linear terms of equations (1)-(3) are neglected for a one-dimensional flow, these 
reduce to the equations of the linear wave: 
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Figure 12. Lines of constant free surface elevation: (a) element T3B (b) element T 6 N  (c) element T6 
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au ah -+ g -  = 0 ,  
at ax 
ah dHu -++=o.  
at ax 

We consider the following boundary conditions: 

u = o  at x = x o ,  
h = ucosot  at x 1  = L + x o  

In the case of a constant slope channel (So), the exact solution reads 

h = [ A J O ( 2 J ( k x ) )  + B Y 0 ( 2 J ( k x ) ) ] c o ~ o t ,  

9 u = ~ [ A J ,  ( 2 , / ( k x ) )  + B Y l ( 2 , / ( k x ) ) ]  sin ot, 
sox  

where 

D = Y 1 ( 2 J ( k x o ) ) J 0 ( 2 J ( k x , ) )  - Y 0 ( 2 J ( k x , ) ) J 1 ( 2 J ( k x o ) ) .  
J and Y are the Bessel functions of first and second orders, x o  is the position of the inlet 
boundary, x 1  is the position of the outlet boundary, L is the length of the channel, o is the 
angular frequency, k = w2/Sog is the wave number, c = J ( g H )  is the celerity of the wave and 
H is the depth of the basin. 
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